設計支援

〈2〉伝熱の話

1.熱のイメージをつかもう

熱設計をする上で重要な要因である伝熱の形態には「伝導」、「対流」、「放射」の3形態があり、それらが複雑に組み合わさって熱の移動が起きています。その伝熱3形態の解説に加えて、熱と温度の違いについて解説します。また、与えられた熱エネルギーからどれくらいの温度上昇になるのか、具体的に例を挙げて説明しています。本シリーズでは5回に分けて熱について考えてみます。

第1回 熱は身近だが定量化が難しい

熱エネルギーの形態が複雑なエネルギーの形態であることを説明します。伝熱の形態には、「伝導」、「対流」、「放射」の3形態がありますが、温度を求めるにはそれぞれの形態の熱方程式を連立的に解く必要があり、熱の定量化を難しくしています。実際の電子機器の中ではこの伝熱3形態が複雑に組み合わさって熱の移動が起きています。本動画ではその伝熱について解説します。

動画はこちら

第2回 温度予測ができても熱設計はできない

温度予測と熱設計は異なる概念です。それを念頭に熱設計にアプローチすることが重要です。温度予測は形状が与えられて温度を予測することでインプットが構造であり、アウトプットは温度になります。一方、熱設計はインプットが目標となる温度、アウトプットがその温度にするための冷却構造や図面になります。熱設計は目標温度になるように、設計パラメータを決定するプロセスが重要です。伝熱の面から熱抵抗を用いた設計パラメータを導く考え方について具体的に解説します。

動画はこちら

第3回 熱と温度は何が違う?(流れない熱の計算)

熱の基本的な問題に立ち返って、熱と温度は何が違うのかについて考えます。熱と温度を明確に区別して説明するのは難しいですが、それを水の水量と水位に例えて解説します。また、熱エネルギー保存の法則に従い温度を求める計算を、具体的な例を挙げて解説します。

動画はこちら

第4回 エネルギーは最後はすべて熱になる

熱エネルギーと他のエネルギーとの関係について考えます。熱エネルギーはエネルギーの最終形態であり、すべてのエネルギーは最後はすべて熱になります。実際にどれくらいの熱になるのか、滝の水が落下することによる水の温度上昇を例に計算してみます。

動画はこちら

第5回 熱はいつも流れている(流れる熱の計算)

これまでは、熱のイメージをつかみやすくするために、熱は一か所に留まっているとしてエネルギーの変換や熱エネルギーから温度を予測する話をしてきましたが、実際の熱は一か所に留まっているわけではなく、拡散していきます。熱の拡散のイメージを水の水位や管路流量に例えて説明します。また、電子機器の場合は電気エネルギーが熱エネルギーに変わりますが、与えられた電気エネルギーにより、どれくらいの温度上昇になるか、熱拡散がない状態の容器に入った水をヒータで加熱する例を挙げて具体的に計算してみます。

動画はこちら

2.熱と電気の相似

熱と電気の相似性が成り立つということは昔からよく知られています。この相似性を使うことにより、熱の問題をすばやく捉えることができます。本シリーズでは熱と電気の相似性というテーマで熱設計を行う上で重要なパラメータである「熱抵抗」「熱流速」「熱容量」などについて4回に分けてわかりやすく解説していきます。

第1回 熱のオームの法則

熱と電気の相似性から電気回路におけるオームの法則を熱設計に適用できます。温度差を電圧に、熱流量を電流に、そして熱の流れにくさ(熱抵抗)を電気抵抗に置き換えてオームの法則で計算することができます。すなはち、温度差は熱流量に比例し、その比例定数が熱の流れにくさを表す「熱抵抗」となります。また、熱抵抗は電気回路の電気抵抗と同様に直列則、並列則、キルヒホフの法則が適用できます。熱回路網を電気回路網に置き換えてオーム法則が適用できることについて解説します。

動画はこちら

第2回 温度ではなく熱抵抗を使う理由

熱設計では温度ではなく熱と電気の相似性を考えて「熱抵抗」を使って計算します。温度は熱設計の結果であり、制御するのは熱の流れにくさを表す「熱抵抗」になります。つまり、温度上昇の対策を行う上で目標となるのは「熱抵抗」の値になります。この熱抵抗を目標値として使うことで、熱回路網を電気回路網と同じように計算できることや、放熱構造に直結するなど、多くのメリットがあります。今回はなぜ「熱抵抗」を使うのか、そのメリットは何かについて解説します。

動画はこちら

第3回 熱的な厳しさを知るなら熱流束

熱設計を行う上で「熱抵抗」と同じように有用なパラメータとして「熱流束」があります。「熱抵抗」は対策を考えるときに使うパラメータであり、「熱流束」は熱的な厳しさを知るためのパラメータです。発熱体の放熱能力は表面積に依存するため、温度上昇は総発熱量を総面積で割った「熱流束」に比例します。「熱流束」が分かればその発熱体の温度上昇を計算することが出来ます。具体的な例を挙げて「熱流束」から発熱体の温度上昇を計算してみます。

動画はこちら

第4回 昇温時間を支配する熱容量

「熱抵抗」は熱的に定常状態での計算になりますが、非定常状態、つまり時間とともに温度が上昇するような過渡応答の解析では「熱抵抗」に加えて「熱容量」を使った計算が必要になります。「熱容量」は電気回路に置き換えるとコンデンサに対応しますので、過渡的な熱計算はRとCの回路網で考えることができます。この「熱容量」は物質の体積と物性値で計算がすることができます。そして「熱容量」が大きいほど熱時定数が大きくなり、温度上昇などに時間がかかることになります。今回はこの「熱容量」について考えてみます。

動画はこちら

製品のお問い合わせはこちら

お客様の課題に合わせてご提案します。お気軽にご相談ください。