SHUNT RESISTORS

SL・SLN電流検出用チップ抵抗器 (高電力品)

■特長
- 小型、超低抵抗値 (3mΩ〜)、高精度 (±0.5%) の SMD 形状の電流検出用抵抗器です。
- 堆積型抵抗器のため、寸法精度が良好で、耐衝撃性に優れております。
- 電気化学的特性を考慮したため、端子強度が高められています。
- フロー・リフロー・コテはんだ付けに対応していいます。
- 欧州RoHS対応しています。
- AEC-Q200に対応(データ取得) しています。

■用途
- 自動車
- ノートPC
- 電池パック
- ACアダプター
- DC-DCコンバータ

■外形寸法

<table>
<thead>
<tr>
<th>形名</th>
<th>定格電力</th>
<th>拡張抵抗値範囲(Ω)</th>
<th>拡張抵抗値係数(×10⁻⁶/K)</th>
<th>使用温度範囲</th>
<th>テープングと包装数/リール(pcs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLW07</td>
<td>1W</td>
<td>D:±0.5% E24・E96×2</td>
<td>F:±1% E24・E96×2</td>
<td>0〜200Ω〜10mΩ</td>
<td>TE・TED (SLN5) 2000</td>
</tr>
<tr>
<td>SLW1</td>
<td>1.5W</td>
<td>10m〜100m</td>
<td>±75Ω〜150Ω</td>
<td>±55℃〜+180℃</td>
<td>2000</td>
</tr>
<tr>
<td>SLN3</td>
<td>3W</td>
<td>5m〜110m</td>
<td>±10Ω〜10mΩ</td>
<td>70℃〜120℃</td>
<td>1000</td>
</tr>
<tr>
<td>SLN5</td>
<td>7W (5W)</td>
<td>5m〜200m</td>
<td>±75Ω〜10mΩ</td>
<td>±65℃〜+180℃</td>
<td>1000</td>
</tr>
</tbody>
</table>

■定格

■構造図

■外形寸法

- 参考規格
 - IEC 60115-1
 - JIS C 5201-1

■定格電圧は定格電力×2行抵抗値による算出値。
- 1抵抗値範囲(Ω)において、5m、6m、7m、8m、9mΩに当該となります。
- 0.1抵抗値電圧は温度20℃の場合、定格電力は5Wとなります。
- 5m〜2.7mΩの場合、抵抗値電圧は温度20℃の場合、定格電力は2.7mΩとなります。
■性能
■負荷軽減曲線
定格端子部温度以上で使用される場合は、左記負荷軽減曲線に従って、電力を軽減して御使用ください。
※ご使用方法につきましては巻頭の“端子部温度の負荷軽減曲線の紹介”を参照願います。

■使用上の注意
- シャント抵抗としてご使用になる場合、周囲のコイルとの電磁誘導を考慮してパターンレイアウトをしてください。
- 50mΩ以下の抵抗値においては、ランドパターンの大きさや接続はんだの量により、はんだ付け後の抵抗値が変動する事があります。事前に抵抗値低下・上昇の影響をご確認の上、機器設計してください。

試験項目	規格値	代表値	試験方法
抵抗値 | 20% | 25℃ | +25℃/+125℃
抵抗温度係数 | 0.5% | 1000h, 1.5時間ON/0.5hOFFの周期
過負荷（短時間） | 1:SLW07, SLW1 0.5:SLN3 2:SLN5 | SLW07:3W/6W印加 SLW1:5W/5W印加 SLN3:10W/10W印加 SLN5:15W/15W印加 | 260℃±5℃, 10s〜12s
ばんの耐熱性 | 1:SLW07, SLW1 | 260℃±5℃, 10s〜12s | 1000cycles
温度急変 | 1:SLW07, SLW1 0.5:SLN3, SLN5 | 40℃±2℃, 90〜95%RH, 1000h, 1.5時間ON/0.5hOFFの周期 | 1000cycles
耐湿負荷 | 2:SLW07, SLW1 | SLW07:125℃, SLW1:120℃, SLN3:105℃, SLN5:70℃ | 1000h, 1.5時間ON/0.5hOFFの周期
低温放置 | 0.5 | 1000h, 1.5時間ON/0.5hOFFの周期

- 印加可能な電圧の上限は最高過負荷電圧になります。パルスを連続して印加する場合の耐性はご確認ください。
- 本データは参考値ですので、ご使用の際は必ず実機での確認をしてください。

■熱抵抗
抵抗器の温度は印加電力が同じならば周囲温度にかかわらず端子部温度を基準として同じですべて上昇します。抵抗器表面から環境空間への放射性はほとんどないことから、温度上昇については、常温測定条件下で測定しているため、使用状況、使用環境により数値が異なるので、ご使用に際しては別途ご相談ください。